Callosal contributions to simultaneous bimanual finger movements.
نویسندگان
چکیده
Corpus callosum (CC) is involved in the performance of bimanual motor tasks. We asked whether its functional role could be investigated by combining a motor behavioral study on bimanual movements in multiple sclerosis (MS) patients with a quantitative magnetic resonance diffusion tensor imaging (DTI) analysis of CC, which is shown to be damaged in this disease. MS patients and normal subjects were asked to perform sequences of bimanual finger opposition movements at different metronome rates; then we explored the structural integrity of CC by means of DTI. Significant differences in motor performance, mainly referred to timing accuracy, were observed between MS patients and control subjects. Bimanual motor coordination was impaired in MS patients as shown by the larger values of the interhand interval observed at all the tested metronome rates with respect to controls. Furthermore, DTI revealed a significant reduction of fractional anisotropy (FA), indicative of microstructural tissue damage, in the CC of MS patients. By correlating the mean FA values with the different motor behavior parameters, we found that the degree of damage in the anterior callosal portions mainly influences the bimanual coordination and, in particular, the movement phase preceding the finger touch. Finally, the described approach, which correlates quantitative measures of tissue damage obtained by advanced magnetic resonance imaging tools with appropriate behavioral measurements, may help the exploration of different aspects of motor performance impairment attributable to the disease.
منابع مشابه
Anterior and posterior callosal contributions to simultaneous bimanual movements of the hands and fingers.
In order to study the role of the corpus callosum in two-handed coordination we tested callosotomy subjects while they attempted to initiate simultaneous discrete movements with both hands. We observed four split-brain patients, including one pre- and post-operatively, as well as normal and epileptic control subjects. Split-brain patients made button presses that were less synchronous than eith...
متن کاملFundamental differences in callosal structure, neurophysiologic function, and bimanual control in young and older adults.
Bimanual actions involve coordinated motion but often rely on the movements performed with each hand to be different. Older adults exhibit differentially greater variability for bimanual actions in which each hand has an independent movement goal. Such actions rely on interhemispheric communication via the corpus callosum, including both facilitatory and inhibitory interactions. Here, we invest...
متن کاملCerebral Cortex doi:10.1093/cercor/bhr349 Fundamental Differences in Callosal Structure, Neurophysiologic Function, and Bimanual Control in Young and Older Adults
Bimanual actions involve coordinated motion but often rely on the movements performed with each hand to be different. Older adults exhibit differentially greater variability for bimanual actions in which each hand has an independent movement goal. Such actions rely on interhemispheric communication via the corpus callosum, including both facilitatory and inhibitory interactions. Here, we invest...
متن کاملDifferential Callosal Contributions to Bimanual Control in Young and Older Adults
Our recent work has shown that older adults are disproportionately impaired at bimanual tasks when the two hands are moving out of phase with each other [Bangert, A. S., Reuter-Lorenz, P. A., Walsh, C. M., Schachter, A. B., & Seidler, R. D. Bimanual coordination and aging: Neurobehavioral implications. Neuropsychologia, 48, 1165-1170, 2010]. Interhemispheric interactions play a key role during ...
متن کاملRole of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements.
To obtain a better understanding of the cortical representation of bimanual coordination, we measured regional cerebral blood flow (rCBF) with 15O-labeled water and positron emission tomography (PET). To detect areas with changes of rCBF during bimanual finger movements of different characteristics, we studied 12 right-handed normal volunteers. A complete session consisted of three rest scans a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 12 شماره
صفحات -
تاریخ انتشار 2008